Sniffer configuration: Difference between revisions

From VoIPmonitor.org
Jump to navigation Jump to search
Line 221: Line 221:


enable storing custom sip headers to database column cdr_next.custom_header_headername. You can specify more headers delimited by ";".  
enable storing custom sip headers to database column cdr_next.custom_header_headername. You can specify more headers delimited by ";".  
WARNING - when you enable this feature voipmonitor will autoupgrade cdr_next table which can take hours depending on how large the table is. In GUI there is new section [[Settings#Custom_headers]].  
WARNING - when you enable this feature voipmonitor will autoupgrade cdr_next table which can take hours depending on how large the table is. In GUI there is new section [[Settings#Custom_header]].  


  custom_headers = X-asterisk-Info ; X-myheader
  custom_headers = X-asterisk-Info ; X-myheader

Revision as of 15:22, 24 May 2013

Configuration file has only one section named [general] where all configuration directives belongs. List of directives will now follow with their description and recommendation values. Name in [ ] brackets is equivalent for command line which takes precendence over configuration file. in case of running more voipmonitor instances on the same or another servers configured to save to one database and the same cdr table it is possible to differentiate CDR by id_sensor column. If you set id_sensor >= 0 the number will be saved in cdr.id_sensor column.

id_sensor

This specifies on which interface will voipmonitor listen. It can listen on one interface or on all interfaces. To listen on all interfaces use interface = any

id_sensor = 1

interface

listening interface. Can be 'any' which will listen on all interfaces - NOTE that "any" will not put intefaces into promiscuous mode and you have to do it with "ifconfig eth0 promisc" check if you are not using -i ethX argument in command line as it has more priority than this configuration file

interface = eth0  [ -i ]

scanpcapdir

scan pcap files folder and read file by file. This is in conjunction with running tcpdump which creates pcap file each 5 seconds (-G 5) storing pcap files named by UNIX_TIMESTAMP to /dev/shm/voipmonitor folder (do not forget create it) using 1GB ring buffer to avoid losing packets (-B500000 - you can lower it but not higher) filtering udp packets (udp parameter whcih you can change to your needs). voipmonitor then reads created files (and delete it after processing. This approach can be used for testing throughput or for very high voip traffic (>500Mbit). If the sniffer is able to process pcap files in realtime - there will be in /dev/shm/voipmonitor folder only one or two pcap files. If the sniffer is not able to process in realtime (blocking by I/O or by CPU) number of pcap files will grow faster then the sniffer is able process.


scanpcapdir = /dev/shm/voipmonitor

WARNING: libpcap < 1.1 contains memory leak when pcap filter is set - do not set filter in this config or upgrade libpcap to the latest (debian 6 libpcap contains the leak) static compiled voipmonitor from voipmonitor.org contains the latest libpcap

tcpdump example command:
nice -n -20 tcpdump -B500000 -i eth2 udp -G 5 -w /dev/shm/voipmonitor 2>/dev/null 1>/dev/null & 

mirrorip

mirror SIP packets to specified IP address. IP is mirrored by ip in ip protocol. This is usefull in case the primary voipmonitor machine see all SIP packets but only part of RTP packets and the second voipmonitor server see only RTP packets -> in this case you can mirror SIP packets to second voipmonitor server IP. voipmonitor already supports ip in ip so no configuration is needed to accept ip in ip mirrored packets. (this mirroring supports for example acme packet SBC). mirroring can be also usefull for another general purpose - it is also parsed by wireshark/tshark etc. if you enable mirrorip you have to set mirroripsrc and mirroripdst if voipmonitor is run with "-r file" (not matter if it is file or /dev/stdin etc) this option is forced to off

mirrorip = yes

by default only defined SIP ports are mirrored. If you want to mirror every single packet set mirrorall = yes. Default is mirrorall = no

mirrorall = no

voipmonitor can be used to do only mirroring and not processing SIP/RTP packets internally in this case set mirroronly = yes default is mirroronly = no

mirroronly = no

mirrordst is IP address (not host name) which packets are sent

mirroripdst = 192.168.0.1

mirrorsrc is source IP address of this server which is used to send packets to mirrordst. This has to be set correct otherwise mirroring would not work. If mirroripsrc is not set source IP is set to 255.255.255.255

mirroripsrc = 10.0.0.1

natalias

in case the SIP(media) server is behind public IP (1.1.1.1) NATed to private IP (10.0.0.3) to sniff all traffic correctly you can specify alias for this case. You can specify more netaliases duplicating rows. In most cases this is not necessary because voipmonitor is able to track both RTP streams based on the other side IP. But if the stream is incoming from another IP then SIP source signalization and also from another IP than the SIP device which is also behind NAT its impossible to track the correct IP. Please note that this is for case where the SIP server is behind NAT and also the client is behind NAT. If your SIP server has public IP do not bother with this.

natalias = 1.1.1.1 10.0.0.3 
natalias = 1.1.1.2 10.0.0.4

managerip

define bind address for manager interface. Default is 127.0.0.1 it is not recommended to change this unless really needed due to security. If you need it on some other IP make sure you set firewall and change the standard port for better security

managerip = 127.0.0.1

managerport

This specifies TCP port which will voipmonitor listen for incoming connections which controls voipmonitor or for getting information about calls. *reload configuration echo reload | nc localhost 5029 *get number of calls echo totalcalls | nc localhost 5029 *get list of calls in json format echo listcalls | nc localhost 5029

managerport = 5029 [ --manager-port <port number> ]

managerclient

connects to server and listen for commands.

managerclient = serverip or hostname
managerclientport = 1234

sipport

define SIP ports wihch will voipmonitor listen. For each port make new line with sipport = port (multiple lines)

sipport = 5060
sipport = 5061 sipport = 5062

rtptimeout

rtptimeout is important value which specifies how much seconds from the last SIP packet or RTP packet is call closed and writen to database. It means that if you need to monitor ONLY SIP you have to set this to at leat 2 hours = 7200 assuming your calls is not longer than 2 hours. Take in mind that seting this to very large value will cause to keep call in memory in case the call lost BYE and can consume all memory and slows down the sniffer - so do not set it to very high numbers. Default is 300 seconds.

rtptimeout = 300

ringbuffer

This feature is the most essential parameter for high volume calls. The value is buffer size in MB allocated in kernel space. This feature will work only on kernels >= 2.6.32 and libpcap >= 1.0. The static version of voipmonitor contains libpcap 1.1.1. The ringbuffer is queued by packets from ethernet device and dequeued by voipmonitor. If the buffer is low and the system is overloaded (CPU or I/O) packets will be dropped. This situation will be logged to syslog. Recommended value for high loads – more than 1000 (will take 1GB of RAM)Notice: if you set this value over ~2000 libpcap will silently allocate nothing. Thus it is recommended to check with "ps axl|grep voipmonitor" if the voipmonitor actualy uses amount of RAM you specified.

ringbuffer = 20 [ --ring-buffer ]

vmbuffer

vmbuffer is user space buffers in MB which is used in case there is more then 1 CPU and the sniffer run two threads - one for reading data from libpcap and writing to vmbuffer and second reads data from vmbuffer and process it. For very high network loads (more than 400 calls) set this to very high number (> 1000). Or in case the system is droping packets (which is logged to syslog) increase this value.

vmbuffer = 50

rtpthreads

number of threads to process RTP packets. If not specified it will be number of available CPUs - 1. If equal to zero RTP threading is turned off. Each thread allocates default 20MB for buffers (increase to 100 on very high loads). This buffer can be controlled with rtpthread-buffer. For < 150 concurrent calls you can turn it off.

rtpthreads = 3

rtpthread-buffer

size of rtp thread ring buffer queue in MB. Default is 20MB per thread - increase it at least to 100 for huge traffic (> 500 simultaneous calls)

rtpthread-buffer 100

jitterbuffer

By default voipmonitor uses three types of jitterbuffer simulators to compute MOS score. First variant is saved into cdr.[ab]_f1 and represents MOS score for devices which has only fixed 50ms jitterbuffer. Second variant is same as first but for fixed 200ms and is saved to cdr.[ab]_f2 Third varinat is adaptive jitterbuffer simulator up to 500ms Jitterbuffer simulator is the most CPU intensive task which is voipmonitor doing. If you are hitting CPU 100% turn off some of the jitterbuffer simulator. Recommended for higher loads is to use only fixed 200ms (f1)

jitterbuffer_f1 = yes
jitterbuffer_f2 = yes jitterbuffer_adapt = yes

callslimit will limit maximum numbers of calls processed by voipmonitor at the same time. If calls are over limit it will be ignored (INVITE)

callslimit = 0

rtp-firstleg

this is important option if voipmonitor is sniffing on SIP proxy like kamailio or openser and sees both RTP leg of CALL. In that case use this option. It will analyze RTP only for the first LEG and not each 4 RTP streams which will confuse voipmonitor. Drawback of this switch is that voipmonitor will analyze SDP only for SIP packets which have the same IP and port of the first INVITE source IP and port. It means it will not work in case where phone sends INVITE from a.b.c.d:1024 and SIP proxy replies to a.b.c.d:5060.

rtp-firstleg = no [ --rtp-firstleg ]

deduplicate

duplicate check do md5 sum for each packet and if md5 is same as previous packet it will discard it. WARNING: md5 is expensive function (slows voipmonitor 3 times) so use it only if you have enough CPU or for pcap conversion only. Default is no.

deduplicate = yes

sipoverlap

enable/disable updating called number from To: header from each caller INVITE. Default is enabled so it supports overlap dialing (RFC 3578)if you want to disable this behaviour and see always number only from the first INVITE set sipoverlap = no

sipoverlap = yes


sip-register

Enable parsing of SIP REGISTER message. SQL register table stores active SIP registrations. Once it expires it is removed from the table to new sql register_state table. The register state table is used to store changes in registrations. SQL table register_failed is used to store all failed sip register. To not overload this table there is counter column which adds +1 for each failed register from the same source.

sip-register = no [ -R ]

sip-register-active-nologbin

if mysql binlog is enabled, skip binlog inserts into active table (which is MEMORY type) if you still want to replicate this too (huge I/O impact) set it to = no sip-register-active-nologbin = yes

nocdr

if yes, voipmonitor will not save CDR to MySQL

nocdr = no [ -c ]


savesip

Store SIP packets to pcap file.

savesip = [ --sip-register ]

savertp

save RTP packets to pcap file. savertp = yes automatically saves RTCP packets you can also save only RTP header without AUDIO: savertp = header if save RTP is aneblad it will also save UDPTL packets (used for T.38) you can also set savertp = no and control what calls will record RTP in mysql table filter_ip or filter_tel which is controled in GUI -> Capture rules. Sending reload command will reload configuration from filter_* table. You can also set savertp = yes but denies recording RTP based on rules in filter_* table.

savertp = yes | header [ -R ]

pcapsplit

voipmonitor by default splits SIP and RTP packets to individual files (in case spooldiroldschema = no) which are located in SIP and RTP directories. This feature allows instance cleaning RTP streams differently then SIP packets to join two pcap files SIP+RTP use mergecap command line utility which is included in wireshark package default = yes | spooldiroldschema must be set to no

pcapsplit = yes

savertcp

Store RTCP packets to pcap file.

savertcp = yes [ --save-rtcp ]

saveudptl

save UDPTL packets (T.38). If savertp = yes the udptl packets are saved automatically. If savertp = no and you want to save only udptl packets enable saveudptl = yes and savertp = no

saveudptl = yes

savegraph

This is usefull only if you have commercial WEB GUI which uses graph files for ploting graph

savegraph = plain [ -G or --save-graph=[gzip|plain] ]

saveaudio

save RTP payload to audio file. Choose 'wav' for WAV PCM or 'ogg' for OGG 25kbps format. please note that this has great impact on I/O and can overload your storage leading to lose packets. Better way is to store only sip+rtp and convert wav files on demand.

saveaudio = wav

keycheck

default path to WEB GUI used to construct path to key check for codecs

default paths: #keycheck = /var/www/voipmonitor/php/keycheck.php #keycheck = /var/www/html/voipmonitor/php/keycheck.php

= saverfc2833 = in case you are not saving RTP at all but you still want to save DTMF carried over RTP packets (RFC2833) you can enable this option. This feature slows down a bit processing RTP packets in main read thread in casse voipmonitor runs in threads. default = 0

saverfc2833 = 0

dtmf2db

Enable storing DTMF (SIP INFO or RFC2833) to cdr_dtmf database. It will store DTMF time and key then it will be shown in SIP history in the GUI

dtmf2db = 0

norecord-header

if any of SIP message during the call contains header X-VoipMonitor-norecord call will be not converted to wav and pcap file will be deleted.

norecord-header = yes

= norecord-dtmf =if any of SIP message during the call contains DTMF INFO sequence "*0" call will be not converted to wav and pcap file will be deleted. default: disabled

norecord-dtmf = yes

pauserecordingdtmf

enable pausing RTP/WAV recording if DTMF sequence detected. default: disabled

pauserecordingdtmf = *9

dumpallpackets

dump all packets to /tmp/voipmonitor-[UNIX_TIMESTAMP].pcap

dumpallpackets = yes

mos_g729

enable MOS score for G.729 codec. If enabled, all cdr with 0 packet loss and stable delays will have maximum MOS of 3.92 and for loss and unstable delay MOS will be calculated according to ITU-T objective PESQ method for G.729 codec. if you want to use MOS as good search value which corellates loss and delay into single value leave it disabled (which is by default). If set to no, all calls will be calculated like it is G.711. Recommended value = no

mos_g729 = no

custom_headers

Since 7.0RC7.

enable storing custom sip headers to database column cdr_next.custom_header_headername. You can specify more headers delimited by ";". WARNING - when you enable this feature voipmonitor will autoupgrade cdr_next table which can take hours depending on how large the table is. In GUI there is new section Settings#Custom_header.

custom_headers = X-asterisk-Info ; X-myheader

match_header

enable saving content of custom header (typicaly in-reply-to) to cdr_next.match_header this header is used in related CDR GUI for matching legs to onen call

match_header = in-reply-to

pcapcommand

pcapcommand will run command after pcap file is closed (after call ends). %pcap% is substitution for real pcap file name. execution is guaranteed to run in serialized way (not in parallel)WARNING - pcapcommand is implemented by forking program which is very expensive and is causing TLB shootouts on multicore system which can generate 500 000 interrupts / sec causing system to drop packets. Watch the performance carefuly (with "vmstat 1" column "in"). Gziping pcap files will be implemented as native function directly in C++ to obey TLB shootdowns.

pcapcommand = gzip %pcap%

filter

libpcap tcpdump style filter. Voipmonitor listens in default only for UDP packets. Unfortunatly filtering UDP packets will filter all VLAN tagged packets which means that you cannot filter only UDP if you want to listen to VLAN tagged packets.

filter = udp or (vlan and udp) [ -f ]

convertchar

list characters that should be converted to underscore (_) in filenames if you want to include space, put it between other characters, like ': :' (will convert ':' and ' ' to '_') defaults to nore

# example - avoid ':' when Call-Id contains port number convertchar = :

spooldir

This is directory where all pcap/graph/wav files are stored.

spooldir = /var/spool/voipmonitor [ -d ]

spooldiroldschema

new spooldir schema stores all files to year-mon-day/hour/minute/[ALL|SIP|RTP|AUDIO] directories if you need to have the old schema year-mon-day/* enable spooldiroldschema = yes. default = no

spooldiroldschema = no

cachedir

store pcap and graph file to <cache/dir> and move it after call ends to spool directory. Moving all files are guaranteed to be serialized which solves slow random write I/O on magnetic or other media. Typical cache directory is /dev/shm/voipmonitor which is in RAM and grows automatically or /mnt/ssd/voipmonitor which is mounted to SSD disk or some very fast SAS/SATA disk where spool can be network storage or raid5 etc. wav files are not implemented yet

cachedir = /dev/shm/voipmonitor

cleanspool_interval

clean spool directory every two hours from oldest file until spooldir size = cleanspool_size (in MB) WARNING - if you have milions files set cleanspool_interval to 24 hour (clean once per day) cleaning is very slow and can overload I/O (in seconds)

cleanspool_interval = 7200

cleanspool_size

set target size of the spool directory for cleaning script (in MB)


cleanspool_size = 50000
#usefull command to clean all RTP files older 7 days # find /var/spool/voipmonitor -maxdepth 1 -type d -mtime +7 -name '20*' | (while read d; do rm -rf $d/*/*/RTP; done)

promisc

This option is only relevant if you are mirroring traffic to your network card/cards. This will not work if interface = any - in this case, use ifconfig to put your desired interfaces to promis mode. Default value is yes and you want to turn it of on command line ues -n which will turn it off.

promisc = yes [ -n ]

database

sqldriver = mysql  #sqldriver = odbc #odbcdriver = mssql #odbsdsn = voipmonitor #odbcuser = root #odbcpass = 

voipmonitor can connect to mysql server or odbc driver. connecting voipmonitor to msssql please refer to README.mssql

mysqlhost = localhost [ -h ]

mysql server, default is localhost

mysqldb = voipmonitor [ -b ]

mysql database, default is voipmonitor

sqlcdrtable_last30d = cdr_last30d sqlcdrtable_last7d = cdr_last7d sqlcdrtable_last1d = cdr_last1d

enable redundant tables which WEB GUI use for speedup searches on giant CDR tables with millions of records. This is deprecated in favor of MySQL partitioning.

mysqlusername = root

mysql username, default is root

mysqlpassword =

mysql password, default is no password